(07 3252 0564 )
Fransiskus Asisi Verry Kristanto
TC = 2x2 + 2xy + 2y2
+ 40
x + y = 8
2x2 + 2xy + 2y2 +
40 – λ ( x + y – 8 )
TCx = 0 → 4x + 2y – λ
= 0 → 4x + 2y = λ
TCy = 0 → 2x + 4y – λ
= 0 → 2x + 4y = λ
TCλ = 0 → -x – y + 8 =
0 → x + y = 8
4x + 2y = λ
2x + 4y = λ
(-)
2x – 2y = 0
2x = 2y
x + y = 8
x = 4 , y = 4
TCxx = 4 > 0 , TCyy
= 4 > 0 , TCxy = 2
∆ = 4 (4) – 2 = 14 > 0
Maka TC minimum pada ( 4 , 4 )
π = 40x – 2x² + xy – 3y² + 20y –
28
x + y = 16
40x – 2x² + xy – 3y² + 20y – 28
– λ (x + y – 16)
πx = 0 → 40 – 4x + y
– λ = 0 → 40 – 4x + y = λ
πy = 0 → x – 6y + 20
– λ = 0 → x – 6y + 20 = λ
πλ = 0 → -x – y – 16
= 0 → x + y = 16
40 – 4x + y = λ
x – 6y + 20 = λ (-)
20 – 5x + 7y = 0
-5x + 7y = -20 │x1│-5x + 7y =
-20
x + y = 16 │x5│
5x + 5y = 80 (+)
12y = 60
y = 5
x + y = 16
x + 5 = 16
x = 11
πxx = -4 < 0 , πyy
= -6 < 0 , πxy = 1
∆ = -4 (-6) – 1 = 23 > 0
Maka π maksimum pada ( 11 , 5 )
Π = 40(11) – 2(11)² + (11)(5) –
3(5)² + 20(5) – 28 = 250
TC = ( 5x – 25 )x – ( 2x – 2y
+ 15 )y + 300
3x + y = 18
( 5x – 25 )x – ( 2x – 2y + 15
)y + 300 – λ ( 3x + y – 18 )
TCx = 0 → 10x – 25
– 2y – 3λ = 0 → 10x – 25 – 2y = 3λ
TCy = 0 → -2x + 4y
+ 15 – λ = 0 → -2x + 4y + 15 = λ
TCλ = 0 → -3x – y
+ 18 = 0 → 3x + y = 18
10x – 25 – 2y = 3λ│x1│10x –
2y – 25 = 3λ
-2x + 4y – 15 = λ │x3│-6x + 12y – 45 = 3λ (-)
16x
– 14y + 20 = 0
16x
– 14y = -20
16x – 14y = -20 │x1│ 16x –
14y = -20
3x + y = 18
│x14│ 42x + 14y = 252 (+)
58x
= 232
x = 4
3x + y = 18
3 (4) + y = 18
12 + y = 18
y = 6
TCxx = 10 > 0 ,
TCyy = 4 > 0 , TCxy = -2
∆ = 10 (4) – (-2) = 42
Maka TC minimum pada ( 4 , 6
)
TR = -3x² - 4y² + 6xy + 50x +
26y + 500
x + y = 80
-3x² - 4y² + 6xy + 50x + 26y +
500 – λ ( x + y – 80 )
TRx = 0 → -6x + 6y +
50 – λ = 0 → -6x + 6y + 50 = λ
TRy = 0 → -8y + 6x +
26 – λ = 0 → -8y + 6x + 26 = λ
TRλ = 0 → -x – y + 80
= 0 → x + y = 80
-6x + 6y + 50 = λ
-8y + 6x + 26 = λ (-)
-12x + 14y + 24 = 0
-12x + 14y = 24│x1│ -12x + 14y = 24
x + y = 80 │x14│ 14x + 14y = 1120 (-)
-26x
= 1144
x = 44
x + y = 80
44 + y = 80
y = 36
-6x + 6y + 50 = λ
-6(44) + 6(36) + 50 = λ
λ = 2
TRxx = -6 < 0 , TRyy
= -8 < 0 , TRxy = 6
∆ = -6 (-8) – 6 = 42 > 0
Maka TR maksimum pada ( 44 , 36
)
TR = -3(44)² - 4(36)²
+ 6(44)(36) + 50(44) + 26(36) + 500 = 2148
Tidak ada komentar:
Posting Komentar