Minggu, 26 Februari 2012

Matematika Bisnis


(07 3252 0564 )
Fransiskus Asisi Verry Kristanto



TC = 2x2 + 2xy + 2y2 + 40
x + y = 8

2x2 + 2xy + 2y2 + 40 – λ ( x + y – 8 )
TCx = 0 → 4x + 2y – λ = 0 → 4x + 2y = λ
TCy = 0 → 2x + 4y – λ = 0 → 2x + 4y = λ
TCλ = 0 → -x – y + 8 = 0 → x + y = 8

4x + 2y = λ
2x + 4y = λ (-)
2x – 2y = 0
2x = 2y
x + y = 8
x = 4 , y = 4

TCxx = 4 > 0 , TCyy = 4 > 0 , TCxy = 2
∆ = 4 (4) – 2 = 14 > 0
Maka TC minimum pada ( 4 , 4 )



π = 40x – 2x² + xy – 3y² + 20y – 28
x + y = 16

40x – 2x² + xy – 3y² + 20y – 28 – λ (x + y – 16)
πx = 0 → 40 – 4x + y – λ = 0 → 40 – 4x + y  = λ
πy = 0 → x – 6y + 20 – λ = 0 → x – 6y + 20 = λ
πλ = 0 → -x – y – 16 = 0 → x + y = 16

40 – 4x + y  = λ
x – 6y + 20 = λ  (-)
20 – 5x + 7y = 0

-5x + 7y = -20 │x1│-5x + 7y = -20
x + y = 16       │x5│  5x + 5y = 80  (+)
  12y = 60
      y = 5
x + y = 16
x + 5 = 16
x = 11

πxx = -4 < 0 , πyy = -6 < 0 , πxy = 1
∆ = -4 (-6) – 1 = 23 > 0
Maka π maksimum pada ( 11 , 5 )
Π = 40(11) – 2(11)² + (11)(5) – 3(5)² + 20(5) – 28 = 250



TC = ( 5x – 25 )x – ( 2x – 2y + 15 )y + 300
3x + y = 18

( 5x – 25 )x – ( 2x – 2y + 15 )y + 300 – λ ( 3x + y – 18 )
TCx = 0 → 10x – 25 – 2y – 3λ = 0 → 10x – 25 – 2y = 3λ
TCy = 0 → -2x + 4y + 15 – λ = 0 → -2x + 4y + 15 = λ
TCλ = 0 → -3x – y + 18 = 0 → 3x + y = 18

10x – 25 – 2y = 3λ│x1│10x – 2y – 25 = 3λ
-2x + 4y – 15 = λ  │x3│-6x + 12y – 45 = 3λ  (-)
16x – 14y + 20 = 0
16x – 14y = -20

16x – 14y = -20 │x1│ 16x – 14y = -20
  3x + y = 18   │x14│  42x + 14y = 252  (+)
58x = 232
    x = 4
3x + y = 18  
3 (4) + y = 18
12 + y = 18
        y = 6

TCxx = 10 > 0 , TCyy = 4 > 0 , TCxy = -2
∆ = 10 (4) – (-2) = 42
Maka TC minimum pada ( 4 , 6 )


TR = -3x² - 4y² + 6xy + 50x + 26y + 500
x + y = 80

-3x² - 4y² + 6xy + 50x + 26y + 500 – λ ( x + y – 80 )
TRx = 0 → -6x + 6y + 50 – λ = 0 → -6x + 6y + 50 = λ
TRy = 0 → -8y + 6x + 26 – λ = 0 → -8y + 6x + 26 = λ
TRλ = 0 → -x – y + 80 = 0 → x + y = 80

-6x + 6y + 50 = λ
-8y + 6x + 26 = λ  (-)
-12x + 14y + 24 = 0

-12x + 14y = 24│x1│  -12x + 14y = 24
x + y = 80        │x14│  14x + 14y = 1120  (-)
-26x = 1144
     x = 44
x + y = 80
44 + y = 80
        y = 36

-6x + 6y + 50 = λ
-6(44) + 6(36) + 50 = λ
λ = 2

TRxx = -6 < 0 , TRyy = -8 < 0 , TRxy = 6
∆ = -6 (-8) – 6 = 42 > 0
Maka TR maksimum pada ( 44 , 36 )

TR = -3(44)² - 4(36)² + 6(44)(36) + 50(44) + 26(36) + 500 = 2148

Tidak ada komentar:

Posting Komentar